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ABSTRACT
QUIC is a new transport protocol that is slowly gaining pop-
ularity in the Internet ecosystem. For example QUIC carries
one third of the Google traffic and at Facebook 75% of its traf-
fic is responsible for QUIC. Considering QUIC’s influence, in
this paper we evaluate QUIC’s privacy properties using two
main streams. First, we analyse third party traffic in the wild
using Chrome and Firefox and then we evaluate DNS over
QUIC against other encrypted DNS protocols. Analyzing
third party traffic reveals that address validation token pose
a serious treat against privacy of users specially with third
party tracking. We are also able to fingerprint Chrome and
Firefox browsers using the values of transport parameters.
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1 INTRODUCTION
QUIC is new transport protocol designed by Google and
now standardized by the Internet Engineering Task Force
(IETF) [15]. Hypertext Transfer Protocol (HTTP) Version 3 is
built on top of QUIC and used by many sites as of now. For
example it is now known that one third of the Google traffic
is carried out by QUIC [1]. However, only 8% of websites
still uses QUIC in overall [2].
Due to the gaining popularity of QUIC among the com-

munity as well as the numerous implementations that are
out there, it is imperative that a thorough analysis of its
weaknesses should be investigated in timely manner. We
divide our work into two separate sections. 1) We evaluate
the QUIC behavior on third-party websites in the wild. 2)
We compare encrypted DNS protocols with a specific focus
on DNS-over-QUIC which is called DOQ.

1.1 QUIC Design
QUIC is designed with the idea to provide applications with
low latency connection establishment and flow controlled
streams for the communication. QUIC is integrated with TLS
1.3 to provide confidentiality and integrity of data. Figure
shows how QUIC is integrated into the protocol stack com-
pared to TLS over TCP. As you can see, that QUIC is a user
space protocol making use of UDP protocol in the kernel
networking stack.

1.1.1 Connection Setup. QUIC supports both 0-RTT and
1-RTT connection setups. First, client sends an ’Initial’ packet
containing a CRYPTO frame carrying TLS 1.3 client hello
and transport parameters. Then the server replies with an
initial packet carrying server hello and further packets with
necessary handshake frames. Once the TLS handshake is
finished client and server starts the data transmission with
encrypted packets. 0-RTT works only if a previous connec-
tion has been established with a host and the secret values
are cached. Figure shows a simplified handshake of 1-RTT
and 0-RTT as well as how QUIC connection setup differs
from TLS over TCP.

1.1.2 Connection ID Selection. Connection identifiers are
used to identify a connection. Connection IDs can be selected
by endpoints independently and each endpoint selects the
connection ID for its peer. A zero length connection IDs are
permitted when a connection ID is not necessary to route
to the correct endpoint. Connection IDs are valid for the
duration of the connection or until its peer invalidates the
connection ID.

1.1.3 Address Validation Token. Server can provide clients
with an address validation token during the connection setup
and clients can use this token in a future connection by
including it in the initial packet so that the address validation
can take place. However, RFC 9000 specification mentions
that the attackers could replay tokens as amplifiers in DDoS
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Figure 1: QUIC stack in comparison to TCP [3]

Figure 2: TLS over TCP

attacks and these tokens should only be accepted for a short
period of time.

1.1.4 Transport Parameters. During the connection setup
each endpoint can declare their transport parameters so that
the other endpoint has to comply with those values when
the data transmission starts. These parameters are sent in a
TLS extension during the handshake. In our study we use
these parameter values to see whether those can be used for
browser fingerprinting.

Figure 3: QUIC 1-RTT Connection

Figure 4: QUIC 0-RTT Connection

1.2 DNS-over-QUIC
The Domain Name Service (DNS) is one of the most impor-
tant parts of making internetworking possible. To find the
global IP address of any public host, a user need only query
their nearest recursive resolver, and will have several an-
swers in less than seconds. However, DNS also represents
many complex security issues; we will consider only the
concerns of the individual user. Such a user would likely be
most concerned about the privacy of their DNS traffic and
whether it will be subject to censorship filters.

Traditional DNS queries and responses are sent in plain
text over UDP. While this makes name resolution services
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relatively simple to access, it leaves individual users vul-
nerable. An observer could easily read any DNS queries to
learn about what sites the user is visiting, or even tamper
with the responses to prevent that user from accessing those
sites. The reality of these violations is a well-documented
and persistent problem.
One approach to this problem is encryption between the

user and the DNS resolver, or between the user and a proxy
server. Proposals for encrypted DNS protocols include DNS-
over-TLS (DOT), DNS-over-HTTPS (DOH), and, of course,
DNS-over-QUIC (DOQ). QUIC is an attractive option for
secure DNS transport, as its authors built in mechanisms
to, ideally, make it robust against tampering, spoofing, and
monitoring.

2 PROBLEM STATEMENT
2.1 In CommonWeb Applications
The authors of [15] state that QUIC’s general security goals
are "confidentiality, integrity, and availability in a range of
deployment circumstances". Confidentiality and integrity are
the goals most pertinent to our analysis. We’ll first investi-
gate which parts of QUIC are meant to achieve these goals,
and then extrapolate the specific privacy metrics on which
QUIC’s authors aimed to out-perform comparable protocol
stacks.

QUIC is supposed to be difficult for intermediators to tam-
per with the traffic since it eliminates the attack surface
provided by TCP. But one could also argue that it makes it
harder to analyze network traffic making it difficult to iden-
tify malicious activity. In this study we investigate whether
it is possible to track users by passively analysing third party
QUIC traffic in the wild and then whether we can use the
information in the initial packet for browser fingerprinting.

2.2 As Compared to Other Solutions in an
Internet Security Problem Space

In addition to evaluating QUIC as a standalone secure trans-
port mechanism, we consider a second perspective: QUIC
as a tool that may help solve an internet security problem.
The problem space we chose is per-user DNS privacy and
integrity.

[12] outlines how Mozilla has already made moves to uti-
lize DOH via Cloudflare in the Firefox web browser, and how
these moves raise concern over, for example, the centraliza-
tion of DNS. As DOQ is the newest in this growing family
of protocols, encrypted DNS is increasingly embraced, and
DOT, DOH, and DOQ have a lot in common with each other,
it seems important to evaluate their common design invari-
ants, unique strengths, and net efficacy. In doing so, we have
another case study on QUIC to consider as the successor to
HTTPS.

3 RELATEDWORK
3.1 QUIC Security Evaluations
QUIC went through 34 revisions before IETF standardized it
in 2021 [15]. There are many previous works which analyzes
the security aspect of QUIC [8], [19]. However, these take
into consideration, the old versions which differs vastly in
terms of fields, etc from the current standardized version.

[20] analyzes the possibility of tracking clients across sev-
eral connections. It analyzes user tracking and third-party
tracking over QUIC. However, it takes into consideration,
using field like ’server-config’, which has been deprecated
in the RFC version of QUIC.
TLS fingerprinting [23] has been used for client finger-

printing by creating signature, such as JA3 [17]. TLS version,
list of accepted Ciphers, List of extension, Elliptic Curve and
Elliptic Curve Format are the fields used for constructing the
JA3 signature. Other techniques have been used for finger-
printing client using QUIC traffic. Using fields in the initial
packet of the QUIC, such as user-agent information, creation
of signature such as CYU [22] has been tried. However, JA3
is not a standardized field of QUIC and with standardization
of QUIC some of the fields such as user-agent have been
deprecated.

3.2 DNS Security and Mechanisms for
Protection

[18] is the first study to measure DNS-over-QUIC at Internet-
wide scale. Kosek et al. scanned for DOQ servers to evaluate
rates of adoption and assembled statistics comparing DOQ
performance to DOT and DOH. They found 1,217 "DoQ-
verified" resolvers, 45% of which are in Asia and 32% of which
are in Europe, withmany operated by AdGuard and nextDNS.
Interestingly, none of the DOQ resolvers they found enabled
0-RTT functionality - Kosek et al. hypothesize that this de-
cision was made to alleviate privacy risks. [6] performed a
similar study, focused on DOH, while [11] found DOT, DOH,
and traditional DNS to have reliability tradeoffs in a variety
of network conditions.
[4], [5], [7], [13] and [21] all show that the 3 encrypted

DNS mechanisms we consider cannot protect users from
simple, off-the-shelf machine learning analyses to identify
the contents of an encrypted DNS query.

4 METHODOLOGY
4.1 Evaluating QUIC Behavior on Websites

in the Wild
We have randomly selected twenty websites including both
popular as well as not so popular sites to observe the behav-
ior of QUIC traffic. We have initially selected five browsers
for our study namely, Chrome, Firefox, Safari, Brave and
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Opera. Unfortunately Safari does not support QUIC by de-
fault and the website we have visited in Safari ended up
using TLS over TCP. With Brave and Opera browsers we see
an unusual behavior where even the initial packet informa-
tion is encrypted making it difficult to uncover values of the
parameters we were interested in. Since Opera and Brave
both use the chromium source we wonder somehow there is
a connection between the chrome browser and Opera and
Brave since only if we use the sites we visited in Chrome in
Opera we see this unusual behaviour. However, with brave
even the new sites have encrypted client hello packet in the
initial packet. If we choose a website that we have not visited
using Chrome then we were able to see the parameters in
clear text in the initial packet in Opera. Therefore, we have
restricted some part of our study just to Chrome and Firefox
considering the time limit we have.
The experiments were conducted as follows. We inter-

cepted the traffic between the browser and the website and
got the pcaps with the help of Wireshark. A single website
was tested three times. First capture is when we visited the
site for the first time, second capture was done without clos-
ing the browser and the final capture is done by closing
and reopening the browser and visiting the website again.
Wireshark was running on the same computer as the tested
browser. To analyse the pcaps, we then wrote a simple script
based on pyshark. For the fingerprinting we use MD5 hash
generator. (Appendices: B)

4.2 Comparing Encrypted DNS Protocols
To compareDNS-Over-QUIC to other encryptedDNS schemes,
we reviewed existing work on the privacy and security prop-
erties, and built a small network artifact capture pipeline to
confirm and build on those findings. The pipeline is struc-
tured as follows:

• A unique test is made up of a combination of target
domain, DNS record type, and encrypted DNS method
– an ’A’ record query for google.com using DNS-Over-
HTTPS constitutes a separate test from an ’A’ record
query for google.com using DNS-Over-QUIC

– a ’AAAA’ record query for bing.com using DNS-
Over-TLS constitues a separate test from a ’A’ record
query for bing.com using DNS-Over-TLS

– an ’A’ record query for cloudflare.com using DNS-
Over-HTTPS constitutes a separate test from an ’A’
record query for developers.cloudflare.com using
DNS-Over-HTTPS

• We run 2 batteries of tests:
– All tests are run from within their own new Docker
containers

– All unique combinations of target domain and DNS
record type are queried fromwithin the sameDocker
container

The purpose of these 2 suites is to look for recurring
identifiers across the second set of queries that could
be used for associating multiple queries to a single user.
Unfortunately, these tests will not fully simulate how
web browser peripherals, such as unique user-agent
strings or managed caches, may enhance the risk of
partial or full de-anonymization.

• no other containers are running. This allows us to iso-
late the encrypted DNS packet capture activity from
other network activity on the testing machine, by
recording on the ’docker0’ interface with dumpcap.
This also simulates the perspective of a generalized
passive observer between client and encrypted DNS
resolver.

• Target domains include a variety of TLDs, such as .gov,
.edu, .com, .org, .mil, and .fr. We run queries on A and
AAAA records for all target domains

• For each unique test or test set, we start a new Docker
container, start the packet capture file, run the query,
save the packet capture, STDOUT, and STDERR for
analysis, and finally shut down and remove the con-
tainer.

• We use a combination of Cloudflare’s public DNS re-
solver services via curl and Adguard’s dnslookup tool
as the encrypted DNS implementations for examina-
tion. DOQ testing tools are rare at this point in time,
given how recent standardization was, and so Ad-
guard’s libraries are one of the few third party options.

When the generated artifacts show unexpected errors, we
re-test the command in a different environment.

We evaluate each mechanism’s behavior on several axes:

• Obfuscation
– Does this mechanism obfuscate the user’s DNS ac-
tivity? To what degree, in comparison to traditional
DNS? Other encrypted DNS mechanisms?

– Does this mechanisms obfuscate the user’s identity,
or make the task of assembling a user profile more
difficult? To what degree, in comparison to tradi-
tional DNS? Other encrypted DNS mechanisms?

• Integrity
– Does this mechanism make tampering with DNS
queries and/or replies more difficult? Towhat degree,
in comparison to traditional DNS? Other encrypted
DNS mechanisms?

After evaluating each encrypted DNS mechanism on these
axes, we will return to a general evaluation of QUIC’s utility
in this problem space.
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5 EVALUATION
5.1 In CommonWeb Applications
1) Can a user be identified across several connections?

Each QUIC connection starts with a handshake. However,
if you have made a connection with the server before, QUIC
protocol allows sending data with 0-RTT functionality. Each
connection has a connection identifier and these IDs are
selected by the peer. The selection of this connection ID is
implementation specific.
Analysing the connection IDs in wireshark logs for the

websites we have selected showed us that this connection
ID is always visible in the protected QUIC packets. Because
of this it seems that a passive observer can easily track the
packets that are destined for a certain connection.
For the ’semrush’ website if we reopen the website after

closing the tab, we see that the connection ID selected by the
source for the destination is different each time. ’uber.com’,
’m.indiamart.com’ and few other sites we have tried all fol-
low the same behaviour. However with ’cloudflare’, ’face-
book’, ’getexperience.acs.org’, ’overthecap.com’ and ’cire-
bonats.com’ we see that the server also selects a connection
ID for the client. The connection ID selected by the server
is being used in the subsequent connections. That seems to
be the only difference between ’cloudflare’, ’facebook’, ’get-
experience.acs.org’, ’overthecap.com’, ’cirebonats.com’ and
other websites.
For the ’google.ru’ website even though we have not

browsed that website ever before, it does a 0-RTT packet.
However, for the connections evenwith 0-RTT, client chooses
a different destination connection ID each time making it
difficult for a passive observer to track a user across connec-
tions.

For the ’gumtree.com.au’ website, 0-RTT seems to be not
implemented as while trying multiple connections without
closing the browser, the full handshake process occurs before
any payload is exchanged.

So the conclusion is that it is difficult to track a user across
several connections.

2) Is this common to Firefox?
We carried out the experiments with the same set of web-

sites on Firefox and compared it with the pcap data for
the Chrome browser to observe the behaviour in different
browsers. Among the differences we found, a major one was
that all of the sites in Firefox, both the source and the desti-
nation IDs are being selected by the client. In chrome, the
source connection ID selected by the server was always 0
for the websites that we have analyzed. Another general
trend noticed in the Firefox pcap was that more information
is present in its initial packets and the fields are consistent
with almost all the websites tried. In chrome, the behavior

observed varied with different websites. Some of the web-
sites had multiple ’Crypto’ frames in their initial packet, and
in general, only one of those frames had the hello protocol in-
formation present. For the website, ’gumtree.com.au’ initial
packet for chrome had malformed tls indicated showing the
dubious nature of the chrome implementation of quic client.
Apart from this, all of the Firefox pcap had the information
stored in cleartext. In contrast, chrome’s behavior was not
consistent for some of the websites, and the initial packets
implemented the ’encrypted handshake’ protocol which hid
all of the information. The second connection, where we con-
nected to the website after just closing the tab, for websites
like ’facebook.com’, ’cloudflare’ and ’semrush.com’ did not
capture any quic traffic. Although, some ’udp’ traffic was
visible in the Wireshark. Another behavior in the chrome
pcap file was that the second connection had encrypted data
in the initial packet for most of the websites analyzed.

3) What are the security implications of zero round-trip
time (0- RTT) handshake?

Based on our observation acrossmultiple connectionswith
the same server, below is the behaviour which was observed
related to 0-RTT session resumption. When a client makes
a connection with the server, the server sends a token on
the first connection which the client caches and uses for
the subsequent connection (0-RTT). However, we were not
able to capture the token being sent from the server to the
client but in 0-RTT connections, we were able to see the
client using the token. Another thing observed was that the
token being used from the client in the 0-RTT connection
was different every time. This behaviour can only be seen
when the websites are visited using Chrome. The Firefox
browser does not present these tokens at all with 0-RTT
connection making us believe that either Firefox does not
cache this token or that the address validation token feature
is not implemented.
The main purpose of the address validation is to ensure

that the connection request originates at the IP address
claimed. Since Chrome always present this token to the
server in the initial packet in clear text we wanted to figure
out whether an attacker can sniff the network traffic and
collect this token and spoof the connection request to make a
new connection with the server. The scapy software we tried
out did not support QUIC and to get it to work to perform
a man in the middle attack requires us to write a custom
protocol in scapy which would require more time and effort.
Considering the limited time we have for this project we
had to let go of that ambition. But we do feel that this token
replay attack can be a legitimate concern for security of the
server.

Address validation token is also vulnerable to third party
tracking. Consider the following scenario. Let’s say website
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A has third party called Z and the same third party Z is
also present in another website B. Since it is the server that
decides the address validation token and its validity period,
third party Z can reuse the token when the same user vis-
its the website B. That way the third party can track the
websites that this particular user visits and create a profile
for that user. Also, the third party does not necessarily have
to reuse the token, it can simply keep a record of tokens it
issues to a particular user so that it can build a profile of the
said user.

4) Can we use QUIC info in initial packets for browser
fingerprinting?

Fingerprinting involves collecting information about browsers,
operating systems, network etc... and using these character-
istics to uniquely identify a particular object be it operating
systems, unique browsers or users. Our goal in this section
is to analyze the third party pcaps that we have gathered to
see what information in the initial packet can be used for
browser fingerprinting.

Initial packet that the client sends to the server has trans-
port parameters in the client hello section. According to the
RFC 9000, each endpoint can choose values for transport pa-
rameters independent of the values chosen by its peer. Since
each browser can choose to use any values for these param-
eters, we first try to see whether we can identify the clients
based on these values. We choose five browsers, Chrome,
Firefox, Safari, Brave and Opera. Safari by default does not
support QUIC and the sites we have checked ended up us-
ing TCP. With the Brave and Opera browsers we ran into a
unique issue where all the transport parameters including
the other info in client hello packet was encrypted by default
even when we were visiting those sites for the first time with
a fresh installation of these browsers. We could not figure out
how it manages to encrypt information in the initial packet
even before establishing the TLS connection. With Opera
browser this behaviour is only visible for the sites we have
visited using Chrome. But with Brave all the information in
client hello is encrypted even if we have not visited those
websites in Chrome. It worked as if somehow a previous
connection has been established just like the behaviour we
see in chrome when we visit a particular site multiple times.
Considering these facts our observations are limited to only
Chrome, Firefox and Opera.

Table 1 shows the transport parameters chosen by Chrome,
Firefox and Opera browsers.

From the Table 1 you can see that Chrome and Opera share
the same values while Firefox is different. These values are
consistent across website within a single browser. Therefore,
if we create a hash out of these values, chrome and opera
always result in ’86cc808155f0f6cf4a5694246e7d5832’ while
Firefox result in ’2c35b99f97e416f627765886238c560f’ value.

Transport Parameter Chrome/Opera Firefox
initial_max_stream_data_uni 6291456 1048576
max_datagram_frame_size 65536 0
initial_max_streams_uni 103 16

initial_max_stream_data_bidi_local 6291456 12582912
initial_max_data 15728640 25165824

initial_max_stream_data_bidi_remote 6291456 1048576
max_idle_timeout 30000 30000

initial_max_streams_bidi 100 16
active_connection_id_limit MISSING 8

Table 1: Transport parameter values chosen byChrome,
Opera and Firefox

A passive observer can inspect these unprotected values in
the initial packet and create a hash and match with these
values to identify which browser the client is communicating
with. Even though you cannot distinguish between Opera
and Chrome since Opera uses the same chromium source
as chrome we do feel that if a vulnerability present in the
chromium source both of these browsers will be affected
and a passive observer can use this information for possible
future attacks.
Next we wanted to see whether we can uniquely iden-

tify the browser version using some of the cert parameters
in QUIC initial client hello packet. We limit this part of our
study to just Firefox since it always gives us consistent result.
We experimented with different fields of the initial client
hello packet of 90.0, 92.0, 94.0, 97.0, 98.0, 99.0, 100.0 and
101.0 versions of Firefox. The observed JA3 for all of these
versions was same with its hash value being consistent as
’b719940c5ab9a3373cb4475d8143ff88’ for the first connection
and ’7faeb639939181044663114099ee6e23’ for the second con-
nection without exiting the browser. Apart from this, almost
all the fields across all versions had the same value making it
difficult to track the browser version. Although, for versions
90 and 92 had ’tls.quic.parameter.initial_max_stream_data_bidi_local’,
and ’tls.quic.parameter.initial_max_data’ different from the
rest of the newer versions of the Firefox. The hash value of
the ’transport_parameters’ (Appendices: A Pt. 2) for Firefox
version 90.0 and 92.0was observed to be ’339e4551d2466db4bed4b-
a54297b5960’ and for rest of the versions was observed to be
’1f0fe5a8b7d6e4418ca7a2fbd38a723b ’.

We also tried to see whether we could uniquely iden-
tify the same browser from different machines using the
cert parameters in QUIC initial client hello packet. We tried
analysing pcap data from two different machines running
mac OS v12.0.1 and a Ubuntu machine running on a EC2 VM.
For all of the combinations of fields analyzed in the initial
client hello packet, we found out that the values and the
fields were identical across the machines and hence tracking
different users is not possible.
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5.2 DNS-Over-QUIC Compared to Other
Encrypted DNS Mechanisms

All 3 encrypted DNS (EDNS for brevity) mechanisms have
the following in common:

• IP
• TLS
• DNS

Thus, any attacks made viable by the structure of these
protocols will affect EDNS. For example, in [9], Hoang et
al. show that the benefits toward per-user obfuscation con-
ferred by EDNS and improvements upon TLS Client Hello are
undermined by the unique set of server IPs from which con-
temporary websites source different types of content. Hoang
et al. show this notion to be a viable website fingerprinting
approach.
A plethora of other such flaws can be found in TLS. Our

packet captures showed that all 3 EDNS mechanisms’ Client
Hellos contained Server Name Indicators (SNI) in cleartext,
broadcasting the intent to communicate with a public EDNS
service; or, once the DNS query has been answered, in TLS
connections with services that are even more sensitive for
the user. While Trevisan et al. show in [21] that using the en-
crypted SNI (eSNI) extension doesn’t make much difference
against machine-learning-based traffic analysis methods for
revealing domains in EDNS, [10] finds that using eSNI can
help users access sites censored by DNS-filtering, to the tune
of 55% in China and 95% in other censoring countries. Sepa-
rately, there exists the threat of man-in-the-middle attacks
on TLS, and the concerns regarding the Certificate Authority
ecosystem when regarding the server certificate private key
solution to TLS MITM.
Closer to the core of TLS’ efficacy, [4], [5], [7], and [21]

all show that relatively simple machine learning techniques
can reveal the targets of EDNS queries, even with padding
included. Hu and Fukuda [13] present similar preliminary
findings for DNS-over-QUIC. Bushart and Rossow further
show that DNS queries, whether encrypted or not, are subject
to a phenomenon in DNS reminiscient of [9]’s findings on
IP-level fingerprinting [4].

To account for the aforementioned complexities, we focus
on the strengths and vulnerabilities offered to EDNS by each
transport mechanism.

5.2.1 DNS-over-TLS and DNS-over-HTTPS. Obfuscation

As observed in our packet captures, DOT uses port 853,
the port publicly assigned by IANA to DNS-over-TLS, DNS-
over-DTLS, and DNS-over-QUIC. DOT’s Client Hello also
indicates "dns" in TLS’ Application Layer Protocol Negotia-
tion field. These two features make DOT connections easy

to identify and isolate, falling behind DOH in obfuscating
application-layer purpose

DOH uses port 443. DOH also indicates "http/1.1" in TLS’
Application Layer Protocol Negotiation field, in contrast with
DOT and DOQ, which indicate "dns" and "doq-i##" respec-
tively. These choices result in DOH connections blending
effectively with other HTTPS applications.
DOT and DOH are, besides the above-noted differences,

functionally very similar. They both perform a TCP hand-
shake, then a TLS handshake, and finally transmit the DNS
operation in question in TLS application data. In DOH, the
query is wrapped in an extra layer of HTTP within that ap-
plication data payload. On the one hand, this makes isolating
the query slightly harder; on the other hand, fingerprinting
based on HTTP header fields, values, and orderings is a well-
known technique. Even so, as [16], [14], and [23] show, in
addition to [4], [5], [7], and [21] - contemporary encryption
does not perform well on the axis of obfuscation.

Integrity
The presence of encryption significantly increases the

barrier to tampering with DNS queries. Minor concerns exist
regarding the ability of middleboxes to alter unencrypted
header fields, but improvement to per-user integrity is only
as good as TLS, for the most part.

5.2.2 DNS-over-QUIC. Obfuscation
DOQ uses port 853, the port publicly assigned by IANA

to DNS-over-TLS, DNS-over-DTLS, and DNS-over-QUIC.
DOT’s Client Hello also indicates "doq-i##" in TLS’ Appli-
cation Layer Protocol Negotiation field. These two features
make DOQ connections easy to identify and isolate, falling
behind DOH in obfuscating application-layer purpose.
As discussed in our analysis of regular QUIC behavior

from third-party sites and applications, QUIC’s source con-
nection ID and address validation token features pose major
fingerprinting risks. This risk remains in DOQ, with DOQ
queries in the persistent environment using SCIDs and to-
kens across connections. Given the brevity of interactions
between devices and DNS resolvers, we question the value
of the SCID when weighed against the described risk.

When executing DOQ queries in a persistent environment,
we noticed the incrementation of the connection number
with each new query. This creates an easy mapping between
QUIC connections and queries when analyzed by a passive
observer, another variable that could be used to identify
query contents. It is thus our recommendation that any DOQ
query should package several domains into a packet.

Integrity
After the TLS handshake, QUIC encrypts not only the

payload but many of the header fields as well, resulting in
a packet that would be difficult to edit without alerting the
recipient.
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5.2.3 QUIC’s Value in the Encrypted DNS Space. Much of
the value that QUIC brings to the EDNS space is in DOQ’s
performance improvements on DOT and DOH. QUIC’s hand-
shake process is much faster, and is attractive in an appli-
cation to DNS, where devices have a multitude of short ex-
changes with resolvers. QUIC’s connection migration fea-
tures are mostly irrelevant to EDNS, and thus features related
to this function simply represent unnecessary attack surface.

6 CONCLUSION
Our study shows that the privacy concerns, several other
studies have found with regards to QUIC has mostly been
fixed with the standardized version of QUIC. For example it
previously was shown that the server config identifier can be
used to recognize a user across multiple sessions. However,
with our limited study from both Chrome and Firefox showed
us that this connection ID changes everytime a user goes to a
webpage evenwith 0-RTT sessionsmaking it difficult to track
a user from different sessions. Also since this connection ID is
determined by the peer, a malicious third party tracker would
find it very difficult to track users across sites. However,
address validation token is still vulnerable to both token
replay attacks and web tracking. Our analysis of the field
values present in the initial packet of the quic connection
depicts that the transport parameter fields are different for
different browsers and also for older versus newer versions
of the browser. Therefore, the fields present in the transport
parameter can be used for browser fingerprinting.
Additionally, we identify points of improvement in DNS-

over-QUIC. DOQ clients should implement eSNI and use a
broader ALPN value. Port 853 is standardized in RFC 9250,
however, allowing the client to migrate queries to a "regu-
lar QUIC traffic" port may better blend DNS activity with
other traffic, protecting both in doing so. QUIC clients should
avoid a 1:1 relationship between query target domain and
connection number, to further obfuscate query contents. Fi-
nally, features for connection migration, and possibly 0-RTT
connections, are arguably unnecessary for DNS, and may
only serve to increase attack surface.
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Appendices
A. Combination of handshake fields used for browser
fingerprinting

1. "JA3_fields":
"tls.handshake.ja3_full",
"tls.handshake.ja3"

2. "transport_parameters":
"tls.quic.parameter.initial_max_stream_data_bidi_remote",
"tls.quic.parameter.initial_max_stream_data_uni",
"tls.quic.parameter.active_connection_id_limit",
"tls.quic.parameter.initial_max_streams_uni",
"tls.quic.parameter.max_idle_timeout" ,
"tls.quic.parameter.initial_max_streams_bidi",
"tls.quic.parameter.initial_max_data" ,
"tls.quic.parameter.max_datagram_frame_size",
"tls.quic.parameter.max_ack_delay",
"tls.quic.parameter.initial_max_stream_data_bidi_local"

3. "quic_data":

"quic.header_form", "quic.fixed_bit",
"quic.packet_number_length",
"quic.version",
"quic.frame_type",
"quic.crypto.offset"

4. "ext_field_1":
"tls.handshake.extension.type",
"tls.handshake.extensions_reneg_info_len",
"tls.handshake.extensions_supported_groups",
"tls.handshake.extensions_supported_group"

5. "ext_field_2":
"tls.handshake.extensions_alpn_list",
"tls.handshake.extensions_alpn_str",
"tls.handshake.extensions_status_request_type",
"tls.handshake.extensions_status_request_exts_len",
"tls.handshake.sig_hash_algs",
"tls.handshake.sig_hash_alg",
"tls.handshake.sig_hash_hash",
"tls.handshake.sig_hash_sig",
"tls.handshake.extensions_key_share_group",
"tls.handshake.extensions.supported_versions_len",
"tls.handshake.extensions.supported_version",
"tls.extension.psk_ke_mode",
"tls.record_size_limit"

6. "remaining_field":
"tls.handshake.type",
"tls.handshake.version",
"tls.handshake.cipher_suites_length",
"tls.handshake.ciphersuites",
"tls.handshake.ciphersuite",
"tls.handshake.comp_methods_length",
"tls.handshake.comp_methods",
"tls.handshake.comp_method"

B. Analyzing pcap for fingerprinting
https://github.com/ckh1698/quic.git
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